Integrin α PAT-2/CDC-42 Signaling Is Required for Muscle-Mediated Clearance of Apoptotic Cells in Caenorhabditis elegans
نویسندگان
چکیده
Clearance of apoptotic cells by engulfment plays an important role in the homeostasis and development of multicellular organisms. Despite the fact that the recognition of apoptotic cells by engulfment receptors is critical in inducing the engulfment process, the molecular mechanisms are still poorly understood. Here, we characterize a novel cell corpse engulfment pathway mediated by the integrin α subunit PAT-2 in Caenorhabditis elegans and show that it specifically functions in muscle-mediated engulfment during embryogenesis. Inactivation of pat-2 results in a defect in apoptotic cell internalization. The PAT-2 extracellular region binds to the surface of apoptotic cells in vivo, and the intracellular region may mediate signaling for engulfment. We identify essential roles of small GTPase CDC-42 and its activator UIG-1, a guanine-nucleotide exchange factor, in PAT-2-mediated cell corpse removal. PAT-2 and CDC-42 both function in muscle cells for apoptotic cell removal and are co-localized in growing muscle pseudopods around apoptotic cells. Our data suggest that PAT-2 functions through UIG-1 for CDC-42 activation, which in turn leads to cytoskeletal rearrangement and apoptotic cell internalization by muscle cells. Moreover, in contrast to PAT-2, the other integrin α subunit INA-1 and the engulfment receptor CED-1, which signal through the conserved signaling molecules CED-5 (DOCK180)/CED-12 (ELMO) or CED-6 (GULP) respectively, preferentially act in epithelial cells to mediate cell corpse removal during mid-embryogenesis. Our results show that different engulfing cells utilize distinct repertoires of receptors for engulfment at the whole organism level.
منابع مشابه
α integrin cytoplasmic tails can rescue the loss of Rho-family GTPase signaling in the C. elegans somatic gonad
Integrin signaling relies on multiple, distinct pathways to impact a diverse set of cell behaviors. The Rho family of GTPases are well-established downstream signaling partners of integrins that regulate cell shape, polarity, and migration. The nematode C. elegans provides a simple in vivo system for studying both integrins and the Rho family. Our previous work showed that the C. elegans α inte...
متن کاملα Integrin cytoplasmic tails have tissue-specific roles during C. elegans development.
Integrin signaling impacts many developmental processes. The complexity of these signals increases when multiple, unique integrin heterodimers are expressed during a single developmental event. Since integrin heterodimers have different signaling capabilities, the signals originating at each integrin type must be separated in the cell. C. elegans have two integrin heterodimers, α INA-1/β PAT-3 ...
متن کاملSuppressor mutations suggest a surface on PAT-4 (Integrin-linked Kinase) that interacts with UNC-112 (Kindlin).
Caenorhabditis elegans striated muscle cells attach to basement membrane and transmit the force of muscle contraction through integrin adhesion complexes. The cytoplasmic tail of β-integrin (PAT-3) is associated with a conserved four-protein complex that includes UNC-112 (kindlin), PAT-4 (integrin-linked kinase), PAT-6 (α-parvin/actopaxin), and UNC-97 (PINCH). The proper localization of UNC-112...
متن کاملRobust Distal Tip Cell Pathfinding in the Face of Temperature Stress Is Ensured by Two Conserved microRNAS in Caenorhabditis elegans
Biological robustness, the ability of an organism to maintain a steady-state output as genetic or environmental inputs change, is critical for proper development. MicroRNAs have been implicated in biological robustness mechanisms through their post-transcriptional regulation of genes and gene networks. Previous research has illustrated examples of microRNAs promoting robustness as part of feedb...
متن کاملMicroRNAs Protect the Robustness of Distal Tip Cell Migrations from Temperature Changes in Caenorhabditis elegans: A Dissertation
microRNAs play an important role in protecting biological robustness during development. Biological robustness is the ability to maintain a consistent output despite variation in input, such as transcriptional noise or environmental stresses. Here, we show that the conserved microRNAs mir-34 and mir-83 promote the robust migration of the distal tip cells in Caenorhabditis elegans when stressed ...
متن کامل